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abstract: Methods of comprehensive microarray-based aneuploidy screening in single cells are rapidly emerging. Whole-genome ampli-
fication (WGA) remains a critical component for these methods to be successful. A number of commercially available WGA kits have been
independently utilized in previous single-cell microarray studies. However, direct comparison of their performance on single cells has not
been conducted. The present study demonstrates that among previously published methods, a single-cell GenomePlex WGA protocol pro-
vides the best combination of speed and accuracy for single nucleotide polymorphism microarray-based copy number (CN) analysis when
compared with a REPLI-g- or GenomiPhi-based protocol. Alternatively, for applications that do not have constraints on turnaround time and
that are directed at accurate genotyping rather than CN assignments, a REPLI-g-based protocol may provide the best solution.
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Introduction
Many groups have developed whole-genome microarray-based
methods to assess chromosome copy number (CN) in order to diag-
nose aneuploidy in human embryos from a single cell (Handyside et al.,
2009; Vanneste et al., 2009; Gutierrez-Mateo et al., 2010; Johnson
et al., 2010a; Treff et al., 2010a). These developments are in large
part due to the failure of fluorescence in situ hybridization (FISH)-
based methods to result in the expected clinical benefit of aneuploidy
screening for the treatment of infertility (reviewed in Fritz, 2008).
Genome-wide approaches are certainly more comprehensive than
FISH (24 compared with ≤12 chromosomes, respectively) and
some microarray-based methods have shown significantly improved
consistency (Treff et al., 2010a,b) and predictive value for aneuploidy
diagnosis (Scott et al., 2008; Northrop et al., 2010).

Some methods of 24 chromosome CN have also demonstrated accu-
racy of blinded predictions in single cells from a variety of cell lines with
previously well-characterized karyotypic abnormalities (i.e. Treff et al.,
2010a). Unfortunately, other studies have considered a method to be
accurate by only establishing that two different methods of analysis indi-
cate that an embryo is abnormal even if the results of the two tests

indicate that the abnormalities involved completely different chromo-
somes (Gutierrez-Mateo et al., 2010). This may be inadequate to estab-
lish the accuracy of a test for single-cell 24 chromosome aneuploidy
diagnosis. Even more troubling is the lack of any accurate calculations
after analysis of single cells from cell lines with known abnormalities
by technologies such as comparative genomic hybridization (CGH) or
array-CGH. Some microarray-based studies have performed testing
of single cells from cell lines (Vanneste et al., 2009; Johnson et al.,
2010a). However, one study suggested that the method was accurate
after evaluating only a small number of single cells (n ¼ 7) from cell
lines, was unable to obtain an interpretable result in 41% of blastomeres
evaluated, and required analysis by two arrays; bacterial artificial
chromosome (BAC) and single nucleotide polymorphism (SNP)
(Vanneste et al., 2009). This may not represent sufficient validation,
reliability or feasibility for routine clinical application. Although the
second study involving cell lines (Johnson et al., 2010a) did evaluate a
large sample size (n ¼ 459), only a single type of abnormality (trisomy
21) was represented. This may also be inadequate to determine the
accuracy of predicting aneuploidy for all 24 chromosomes.

Unfortunately, these and other preclinical validation considerations
have gone overlooked during the development and implementation of
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many new technologies for 24 chromosome aneuploidy screening.
Clinical studies have also been limited. For example, case–control
and observational studies may not represent sufficient strength of evi-
dence to determine the clinical validity of new technologies. This is
particularly true in light of the experiences with FISH-based aneuploidy
screening which was suggested to be clinically beneficial based on
case–control studies (Gianaroli et al., 1997; Munne et al., 1999;
Kahraman et al., 2000; Munne et al., 2003; Munne et al., 2006),
despite failing to show a meaningful benefit in all randomized con-
trolled clinical trials (reviewed in Fritz, 2008). Although similar case–
control and observational clinical studies using comprehensive
methods of aneuploidy screening have been reported (Wells et al.,
2009; Munne et al., 2010; Rabinowitz et al., 2010; Schoolcraft et al.,
2010a,b), randomized controlled trials have been limited. Indeed,
class I strength of evidence for a significant improvement in clinical
pregnancy and embryo implantation rates (i.e. Scott et al., 2010)
should be made standard for any new aneuploidy screening technology
prior to routine implementation. An equally important clinical trial
involves a prospective blinded non-selection design (i.e. Scott et al.,
2008) in which the negative predictive value of the test is determined.
In other words, it is critical to know whether the test produces false-
positive abnormal diagnoses in embryos that are otherwise capable of
developing into chromosomally normal pregnancies. Such a study is
important in confirming whether the test can be used to safely
discard human embryos.

Whole-genome amplification
A critical step in every single-cell 24 chromosome aneuploidy screen-
ing method is whole-genome amplification (WGA). Single cells
possess �6–7 pg of genomic DNA (gDNA) (Dolezel et al., 2003)
and microarrays typically require nanogram amounts of DNA to
proceed as recommended. This necessitates amplification of the
genome by more than 1000-fold. Moreover, since these technologies
have commonly been applied to quantitatively evaluate chromosomal
CN, the WGA procedure must result in unbiased amplification to
maintain relative quantities of DNA across the entire genome. Some
methods of WGA and microarray-based molecular karyotyping rely
upon the interpretation of qualitative genotypes rather than quantitat-
ive CN assignments (Handyside et al., 2009; Johnson et al., 2010a). In
these situations and in applications where single gene disorders may
be evaluated directly (Hellani, 2005; Burlet et al., 2006; Lledo et al.,
2006; Panelli et al., 2006; Lledo et al., 2007; Ren et al., 2007;
Renwick et al., 2007; Hellani et al., 2008a) or through microarray-
based haplotype inheritance analyses (Handyside et al., 2009), geno-
typing fidelity is also a critical component of WGA.

There are a variety of commercially available reagents to perform
single-cell WGA that have aided in widespread utilization (Table I).
For example, some groups have used a multiple displacement amplifi-
cation (MDA) approach using QIAgen’s ‘REPLI-g’ technology (Handy-
side et al., 2004, 2009; Sher et al., 2007, 2009) or GE Healthcare’s
‘GenomiPhi’ technology (Le Caignec et al., 2006; Hellani et al.,
2008b; Vanneste et al., 2009). MDA involves the use of a bacterio-
phage (F29) DNA polymerase that employs rolling circle amplification
during incubation at a single temperature (isothermal) (Dean et al.,
2002). Other groups have employed PCR-based amplification strat-
egies using Sigma’s ‘GenomePlex’ technology (Fiegler et al., 2007;

Gutierrez-Mateo et al., 2010; Treff et al., 2010a). PCR-based WGA
involves the use of a DNA polymerase from the thermophilic bacter-
ium Thermus aquaticus and repeated cycling between temperatures
appropriate to sequentially denature and elongate the DNA (Saiki
et al., 1988). Interestingly, comparison studies of commercially avail-
able MDA and PCR-based WGA methods have only evaluated the
performance on input DNA quantities that exceed those found in a
single cell (Lovmar et al., 2003; Barker et al., 2004; Park et al.,
2005). The present study performs the first direct comparison of com-
mercially available single-cell WGA methodologies for amplification
reliability, fidelity and accuracy by SNP microarray analysis.

Materials and Methods

Experimental design
This study was designed to evaluate three commercially available methods
of WGA on single cells. The evaluation was conducted using an SNP
microarray platform with gDNA extracted from a large amount of cells
serving as a benchmark for genotyping and CN accuracy on single cells
from the same cell line.

Single-cell isolation
Four human fibroblast cell lines were obtained from the Coriell Cell Reposi-
tory (Camden, NJ, USA). The karyotype of each cell line was different in the
CN of the X chromosome and included a 46,XY cell line (GM00323) repre-
senting a chromosome X CN of 1, a 46,XX cell line (GM00321) representing
a chromosome X CN of 2, a 47,XXX cell line (GM04626) representing a
chromosome X CN of 3 and a 49,XXXXY cell line (GM00326) representing
a chromosome X CN of 4. Cells were cultured in Eagle’s minimum essential
medium with 15% fetal bovine serum, 2× non-essential amino acid and 1%
penicillin–streptomycin–glutamine (Invitrogen Corp., Carlsbad, CA, USA)
at 378C and 5% CO2. Single cells were isolated following treatment with
trypsin/EDTA (Invitrogen) to detach the adherent fibroblast cultures as rec-
ommended. Single cells were then picked up in 1 ml of media using a 100 mm
stripper tip (Midatlantic Diagnostics, Mount Laurel, NJ, USA) under a dis-
secting microscope and placed in the bottom of a 0.2 ml PCR tube
(Ambion Inc., Austin, TX, USA) holding WGA method-specific solutions
as described below. Thirty single cells were picked up from each cell line;
10 single cells for each WGA method. One microlitre of media was
removed to serve as negative controls for each WGA method. gDNA was
also extracted from each cell line immediately after single cells were obtained
using the DNeasy Blood and Tissue Kit (Qiagen Inc., Valencia, CA, USA) as
described by the manufacturer.

Single-cell WGA
The GenomiPhi DNA amplification kit (GE Healthcare, Piscataway, NJ,
USA) was used on single cells according to a previous publication (Le
Caignec et al., 2006). One microlitre of culture media containing a single
cell was loaded into 0.2 ml PCR tubes containing 2.5 ml alkaline lysis
buffer [200 mM KOH and 50 mM DTT (Cui et al., 1989)]. The samples
were stored at 2808C for at least 30 min and then incubated at 658C
for 10 min. Two and a half microlitres of neutralization buffer [0.9 M
Tris–HCl, pH 8.3, 0.3 M KCl and 0.2 M HCl (Cui et al., 1989)] were
then added to the sample to neutralize the lysis buffer. Nine microlitres
of GenomiPhi sample buffer containing the random hexamer primers
were added to the neutralized cell lysate, followed by 9 ml of GenomiPhi
reaction buffer and 1 ml of GenomiPhi enzyme mix. The isothermal ampli-
fication was performed at 308C for 3 h and the reaction was stopped upon
incubation at 658C for 10 min.
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Table I Comparison of notable 24 chromosome aneuploidy screening technologies.

Characteristic CGH SNP array Array-CGH SNP
array 1 array-CGH

Wells et al.
(1999)

Sher et al.
(2007)

Johnson et al.
(2010a)

Treff et al. (2010a) Handyside
et al. (2009)

Gutierrez-Mateo
et al. (2010)

Hellani et al.
(2008b)

Vanneste et al.
(2009)

WGA method PCR (custom
DOP-PCR)

MDA (REPLI-g) MDA
(undisclosed)

PCR (GenomePlex) MDA (REPLI-g) PCR (GenomePlex/
Sureplex)

MDA
(GenomiPhi)

MDA (GenomiPhi)

Array method NA NA 370K SNP 250K SNP 370K SNP 2K CGH (BAC) 44K
oligonucleotide

4K CGH (BAC) and 250K
SNP

2-day turnaround time — — + Treff et al. (2009a) — + — —

Cell line studya — — + + — — — +
Consistency studyb Wells and

Delhanty
(2000)

— + + — — — +

FISH comparison study Fragouli et al.
(2008)

Keskintepe
et al. (2007)

— Treff et al. (2010b),
Northrop et al.
(2010)

— + + —

Single gene disorder detectionc — — Rabinowitz et al.
(2009)

Treff et al. (2009b) Handyside et al.
(2010)

— — —

Chromosome translocation
detection

— — Johnson et al.
(2010b)

Treff et al. (2010c) — Escudero et al. (2010) — —

Observational or case–control
study

Schoolcraft
et al. (2010a)

+, Sher et al.
(2009)

Rabinowitz et al.
(2010)

Schoolcraft et al.
(2010b)

— Munne et al. (2010) — —

Non-selection study — — — Scott et al. (2008) — — — —

Randomized controlled study — — — Scott et al. (2010)d — — — —

Deliveries reported Wells et al.
(2009)

Sher et al.
(2009)

— Treff et al. (2009a) — + — —

A ‘+’ symbol refers to the reference cited in the header of each respective column.
aAnalysis of accuracy on single cells with known karyotypes.
bAnalysis of multiple blastomeres from within the same embryos.
cDemonstrated ability to evaluate a monogenic disorder from the same biopsy.
dThis study included demonstrating equivalence of a real-time PCR protocol (Treff et al., 2009c) to the SNP microarray protocol (Treff et al., 2010a) prior to using it in a randomized controlled trial.
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The REPLI-g Midi Kit (Qiagen) was used on single cells according to a
previous publication (Handyside et al., 2004). Single cells in 1 ml of
culture media were loaded into 0.2 ml PCR tubes containing 2.5 ml PBS
buffer. Three and a half microlitres of buffer D2 were added followed
by a 10 min incubation on ice and a 5 min incubation at 658C. Three
and a half microlitres of stop solution were added to stop the lysis reac-
tion. A WGA master mix containing 10 ml nuclease free water, 29 ml reac-
tion buffer and 1 ml DNA polymerase was added to the cell lysate
followed by the isothermal amplification at 308C for 16 h and inactivation
at 658C for 3 min.

The GenomPlex Single Cell Whole Genome Amplification Kit (WGA4;
Sigma Aldrich, St Louis, MO, USA) was used on single cells as described in
a previous publication (Fiegler et al., 2007). Single cells in 1 ml of culture
media were loaded into 0.2 ml PCR tubes containing 7 ml of nuclease
free water. One microlitre of alkaline lysis buffer was added followed by
incubation at 658C for 10 min to lyse the cell. One microlitre of neutral-
ization buffer was added to neutralize the lysis buffer. WGA was per-
formed following the manufacturer’s instructions (Sigma Aldrich).

WGA DNA from each of the three methods described above was pur-
ified using the GenElute PCR Cleanup Kit (Sigma Aldrich) as described in
the manufacturer’s instructions.

Single-cell WGA reliability
The concentration of purified WGA DNA and gDNA was measured using
a NanoDrop 8000 spectrophotometer (Thermo Scientific, Wilmington,
DE, USA) and DNA yield was calculated. One hundred nanograms of
WGA DNA and gDNA were loaded to 2% E-Gel electrophoresis
system (Invitrogen) and visualized with a Kodak Gel Logic 100 system
(Kodak, Rochester, NY, USA). Successful WGA was defined as a single-
cell sample that yielded more than the required input WGA DNA
amount for SNP microarray-based analysis (250 ng). For each method,
reliability was defined as the percentage of samples that met this
definition.

Single-cell WGA genotyping fidelity
Three representative WGA DNA samples from each WGA method and
each cell line were evaluated by SNP microarray analysis. Two hundred
and fifty nanograms of WGA DNA or gDNA were processed with the
GeneChip 250K NspI SNP microarray as instructed by the supplier
(Affymetrix, Santa Clara, CA, USA). Genotypes of each SNP were
obtained using the Dynamic Model Mapping Algorithm of the GeneChip
Genotyping Analysis Software (GTYPE) 4.1 (Affymetrix). Genotyping
coverage was defined as the percentage of SNPs which were successfully
assigned a genotype. As such, the SNPs given a ‘no call’ assignment
would contribute to reduced genotyping coverage. Genotyping accuracy
was defined as the percentage of SNPs assigned a genotype that was
equivalent to the genotype assigned to purified gDNA from the same
cell line. Allele dropout (ADO) was defined as the number of SNPs
that were assigned a homozygous genotype, despite being assigned a
heterozygous genotype in the purified gDNA profiles from the same
cell line.

Single-cell WGA CN accuracy
The same data used to evaluate genotyping accuracy above were also eval-
uated for CN accuracy by using the Copy Number Analysis Tool (CNAT)
4.0.1 (Affymetrix). The CN assignments of each sample were compared
with those of the purified gDNA from the same cell line and to the
known karyotype of each cell line as reported by the Coriell cell reposi-
tory. Results were evaluated for accuracy at three levels of analysis;
each individual SNP, each individual chromosome and each individual
cell’s 23 chromosome molecular karyotype. The overall CN assignment

for a single chromosome was determined based on the SNP CN that rep-
resented the majority of the assignments within that chromosome (Treff
et al., 2010a). Diagnostic accuracy was defined as the percentage of
single cells given the correct whole chromosome specific gain, loss or
euploid assignments.

Figure 1 Reliability of single-cell WGA. (A) Gel electrophoresis of
purified reaction products of three representative samples and one
no template control (-) from each of three single-cell WGA
methods (GenomiPhi, REPLI-g and GenomePlex). Representative
purified gDNA and molecular weight markers (MW) are included
for size references. (B) The mean yield of amplification (+SEM) of
40 single cells (black bars) or 4 no template controls (NTC; white
bars) from each of three single-cell WGA methods. (C) The rates
of successful amplification of 40 single cells from each of three single-
cell WGA methods.
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Statistics and data repository
A Student’s t-test was used to evaluate significance; a was set at 0.05.
Variation was reported as+1 standard error of the mean (SEM). The
microarray data discussed in this publication have been deposited in
NCBI’s Gene Expression Omnibus and are accessible through GEO
Series accession number GSE24690 (http://www.ncbi.nlm.nih.gov/geo).

Results and Discussion
Both GenomiPhi and REPLI-g methods produced WGA DNA that
was equivalent in molecular weight to that of the gDNA (Fig. 1A).
However, a similar-sized DNA smear was detected from the no tem-
plate controls amplified with REPLI-g. As a result, gel electrophoresis

Figure 2 Genotype fidelity of single-cell WGA. (A) The percen-
tage of SNPs evaluated that were successfully assigned a genotype
(genotyping coverage) for each of three single-cell WGA methods.
(B) The percentage of SNPs assigned a genotype identical to the pur-
ified gDNA assignments (genotyping accuracy) for each of three
single-cell WGA methods. (C) The percentage of SNPs assigned a
homozygous genotype in the single cells but also assigned a heterozy-
gous genotype in the purified gDNA samples (genotyping ADO rate)
for each of three single-cell WGA methods.

Figure 3 CN assignment accuracy of single-cell WGA. (A) The
percentage of SNPs evaluated that were assigned the expected CN
(SNP CN accuracy) for each of three single-cell WGA methods.
(B) The percentage of chromosomes evaluated that were assigned
the expected CN (chromosome ploidy accuracy) for each of three
single-cell WGA methods. (C) The percentage of cells that were
assigned the expected chromosome loss, gain or euploidy (karyotype
diagnostic accuracy) for each of three single-cell WGA methods.
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of REPLI-g WGA DNA alone was insufficient to determine whether
amplification was successful. GenomPlex WGA DNA product size
ranged from 100 to 1000 bp (Fig. 1A). The average WGA DNA
yield from the GenomiPhi protocol was 0.57+0.1 mg and significantly
less (P , 0.01) than the 7.63+0.4 mg from GenomePlex or the
18.93+0.8 mg from REPLI-g (Fig. 1B). Similar quantities of DNA
were detected from the no template controls amplified using the
REPLI-g protocol (15.62+ 2.3 mg). As a result, DNA quantification
by UV spectroscopy of REPLI-g WGA DNA was also insufficient to
determine whether specific amplification was successful. This is con-
sistent with previous studies which have found non-specific primer-
directed DNA amplification with no template control MDA reactions
(Lage et al., 2003; Brukner et al., 2005). Eighty-eight per cent (35/40)
of the single cells successfully amplified with the GenomiPhi method by
yielding .250 ng of WGA DNA. REPLI-g and GenomePlex methods
yielded .250 ng WGA DNA from 100% of the single cells (Fig. 1C).

No significant difference in reliability of obtaining sufficient quantities of
DNA for microarray analysis was observed between the three
methods.

Single-cell WGA DNA provided an average of 74% genotyping cov-
erage with the GenomiPhi protocol and 78% with GenomePlex, which
were both significantly lower than the 88% obtained with REPLI-g
(Fig. 2A). Single-cell WGA DNA genotypes provided an average of
86% accuracy with the GenomiPhi protocol, which was significantly
less than the 89% accuracy obtained with GenomePlex (Fig. 2B).
Both the GenomiPhi and GenomePlex protocols’ genotyping accuracy
was significantly lower than the 96% obtained with REPLI-g (Fig. 2B).
There was an average ADO rate of 14% using GenomiPhi and 11%
using GenomePlex, both of which were significantly higher than the
4% obtained using REPLI-g (Fig. 2C). These results are applicable to
performance of methods that require accurate genotyping and quali-
tative analysis of aneuploidy, such as those described by Johnson

Figure 4 SNP microarray-based CN graphs of (A) purified gDNA, or single cells amplified with (B) GenomiPhi, (C) REPLI-g or (D) GenomePlex
protocols. Each panel includes analyses of each of four cell lines possessing one to four X chromosome copies.
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et al. (2010a) and Handyside et al. (2010), or in situations where one
might consider using WGA DNA to genotype-specific genes of inter-
est (i.e. for single gene disorder screening).

Similarity of single-cell CN assignments to assignments made on
gDNA and as expected from the conventional karyotype data for
each cell line were evaluated at three levels. For individual SNPs,
62% similarity was obtained using the GenomiPhi protocol, which
was significantly less than the 95% similarity obtained using REPLI-g
or the 99% similarity obtained using GenomePlex (Fig. 3A). For indi-
vidual chromosomes, 75% similarity was obtained using the Genomi-
Phi protocol, which was significantly less than the 97% similarity
obtained using REPLI-g or the 99% similarity obtained using Genome-
Plex (Fig. 3B). For single-cell molecular karyotyping diagnosis, 0% accu-
racy was obtained using the GenomiPhi protocol, which was
significantly less than the 83% similarity obtained using REPLI-g or
the 100% similarity obtained using GenomePlex (Fig. 3C). A compre-
hensive view of the gDNA and single-cell CN assignments is also dis-
played in Fig. 4 and reflects the levels of accuracy reported above.
These results are of particular importance to the performance of
methods that require accurate quantitative analysis of CN such as
those reported by Le Caignec et al. (2006) and Vanneste et al.
(2009), which used GenomiPhi technology, and Fiegler et al. (2007),
Treff et al. (2010a) and Gutierrez-Mateo et al. (2010), which used
GenomePlex technology.

The duration of amplification is also important when considering the
application of single-cell WGA technology to clinical PGD. With
WGA only one step is necessary to generate a diagnosis for the ampli-
fied sample, which also involves downstream microarray processing
and analysis. For example, the most typical PGD application requires
the completion of single-cell analysis within 24 h of initiating the pro-
cedure in order to avoid embryo cryopreservation. Therefore,
although the REPLI-g protocol may be suitable for single-cell appli-
cations that do not have time constraints, the 16 h turnaround time
may not allow for its routine use in PGD for aneuploidy screening.
A more rapid turnaround time with isothermal MDA was represented
in this study by the GenomiPhi protocol. Unfortunately, this shortened
MDA protocol performed with the least reliability, fidelity and accu-
racy of all methods tested. In contrast, the GenomePlex protocol pro-
vided a more rapid turnaround time (4 h) which could be suitable for
application to PGD and produced the highest CN assignment accuracy
of all methods tested. Therefore, for applications requiring accurate
and rapid CN analysis, such as PGD for aneuploidy screening, the
GenomePlex protocol may be more appropriate than REPLI-g or Gen-
omiPhi MDA-based protocols. However, for those applications
requiring accurate genotyping analysis without time constraints, the
REPLI-g protocol may be more appropriate than the GenomePlex
or GenomiPhi protocols.

In summary, this study represents the first direct comparison of
commercially available single-cell WGA method performance, a
necessary step in all 24 chromosome aneuploidy screening technol-
ogies. Clinically relevant measurements of reliability, fidelity and
accuracy were evaluated for each method. In general, a longer
MDA protocol was better for genotyping accuracy than PCR, and
PCR was better and faster than MDA for CN accuracy. Clinicians
and laboratory directors should consider these and other critical
pieces of evidence (presented in Table I and reviewed in Scott
and Treff, 2010) when evaluating new technologies that intend to

predict the chromosomal status and reproductive potential of
human embryos.
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